Math9A - Midterm2 Review - Ch 1(Squares and Surface Area)

1. Which numbers below are perfect squares? How do you know?
a) $\frac{25}{121}$
b) $\mathbf{2 . 8 9}$
c) $\frac{2}{50}$
d) 0.004
2. Calculate the number whose square root is:
a) $\frac{5}{7}$
b) 1.6
c) 0.92
d) $\frac{10}{9}$
3. Determine the value of each square root.
a) $\sqrt{\frac{225}{49}}$
b) $\sqrt{\frac{9}{25}}$
c) $\sqrt{\frac{400}{324}}$
d) $\sqrt{\frac{4}{49}}$
4. Determine the value of each square root.
a) $\sqrt{6.76}$
b) $\sqrt{327.61}$
c) $\sqrt{0.0025}$
d) $\sqrt{0.0225}$
5. The area of a square garden is $12.25 \mathrm{~m}^{2}$.
a) Determine the perimeter of the garden.
b) The owner decides to put a gravel pathway around the garden.

This reduces the area of the garden by $4.96 \mathrm{~m}^{2}$.
What is the new side length of the garden?
6. Which numbers below are perfect squares? How do you know?
a) $\sqrt{\frac{16}{53}}$
b) $\sqrt{\frac{1}{25}}$
c) $\sqrt{0.009}$
d) $\sqrt{10.24}$

State the benchmark(s) you could use to approximate each square root.
a) $\sqrt{29}$
b) $\sqrt{0.41}$
c) $\sqrt{\frac{18}{18}}$

8. Use benchmarks to approximate each square root to the nearest tenth.
a) $\sqrt{11}$
b) $\sqrt{0.39}$

9. Suppose the $\sqrt{ }$ key on your calculator is broken. Explain how you could use your calculator to estimate $\sqrt{58.6}$ to the nearest tenth.
10. Use a calculator to approximate each square root to the nearest tenth.
a) $\sqrt{14.29}$
b) $\sqrt{\frac{15}{8}}$
c) $\sqrt{\frac{2}{19}}$
d) $\sqrt{0.7}$
11. In each triangle, determine the unknown length to the nearest tenth of a unit where necessary. $a^{2}+b^{2}=c^{2}$
a)

Each cube has edge length 1 unit. (or find the number of faces)
b)

Determine the surface area of each object.
a)

b)

d)

13. Determine the surface area of this composite object.

14. The local curling rink is shown in the diagram at the right. It is to be painted.
a) Determine the surface area of the structure.

The roof, windows, and door are not to be painted. The door is 1 m by 2 m and the window is 4 m by 2 m . Determine the surface area to be painted.

$\propto A$
A can of paint covers $300 \mathrm{~m}^{2}$ and costs $\$ 45$. Determine the cost of the paint needed.
15. Determine the surface area of each composite object to the nearest tenth of a square centimetre where necessary.
a)

b)

16. Determine the surface area of the composite object at the right to the nearest square metre.

Answers

1. a) Yes, both 25 and 121 are perfect squares. b) Yes, $\sqrt{2.89}=\sqrt{\frac{289}{100}}=\frac{17}{10}$ c) Yes, $\frac{2}{50}=\frac{4}{100}$ and $\sqrt{\frac{4}{100}}=\frac{2}{10}=0.2$ d) $N o, 0.004=\frac{4}{1000}$ and 1000 is not a perfect square.
2. a) $\frac{25}{49}$ b) 2.56 c) 0.8464 d) $\left.\frac{100}{81} 3 . a\right) \frac{15}{7}$ b) $\frac{3}{5}$ c) $\frac{20}{18}$, or $\frac{10}{9}$ d) $\ldots \sqrt{\frac{4}{49}}=\frac{2}{7} 4$. a) 2.6 b) 18.1 c) 0.05 d) 0.15
5.a) Side length in metres $=\sqrt{12.25}=3.5$
5.a) Side length in metres $=\sqrt{12.25}=3.5$

So, perimeter of garden is $4 \times 3.5 \mathrm{~m}$, or 14 m .
b) New area of garden: $12.25 \mathrm{~m}^{2}-4.96 \mathrm{~m}^{2}=7.29 \mathrm{~m}^{2}$ New side length in metres:
$\sqrt{7.29}=2.7$
6. a) $\mathrm{No}, 53$ is not a perfect square. b) Yes, both 1 and 25 are perfect squares. c) $\mathrm{No}, \sqrt{0.009}=\sqrt{\frac{9}{1000}}$, and 1000 is not a perfect square. d) Yes, $\sqrt{10.24}=\sqrt{\frac{1024}{100}}$ and both 1024 and 100 are perfect squares.
7. a) $\sqrt{25}=5$ and $\sqrt{36}=6$ b) $\sqrt{0.36}=0.6$ and $\sqrt{0.49}=0.7$ c) $\sqrt{\frac{\sqrt{37}}{37}}=\sqrt{\frac{16}{36}}$ d) $\sqrt{\frac{14}{3}}=\sqrt{4}$
8. a) $\sqrt{11}$ is between $\sqrt{9}=3$ and $\sqrt{16}=4$, but closer to 3. $\operatorname{Try} 3.4: 3.4^{2}=11.56$.

So, $\sqrt{11.6} \doteq 3.4$
b) $\sqrt{0.39}$ is between $\sqrt{0.36}=0.6$ and $\sqrt{0.49}=0.7$, but closer to 0.6 , so try 0.62 .
c) $\sqrt{\frac{21}{2}}=\sqrt{10.5}$ and $\sqrt{10.5}$ is between $\sqrt{9}=3$ and
$\sqrt{16}=4$, butsloser to 3
Try 32: $3.2^{2}=10.24$, which
So, $\sqrt{\frac{21}{2}} \doteq 3.2$
d) $\sqrt{\frac{17}{52}}=\sqrt{\frac{13}{52}}=\sqrt{\frac{1}{4}}$, which
is $\frac{1}{2}$. So, $\left(\sqrt{\frac{11}{52}}=b .5\right.$
9. I could use guess and test. I could use the benchmarks $\sqrt{49}=7$ and $\sqrt{64}=8$. Since 58.6 is a little closer to 64 , try 7.7. $7.7^{2}=59.29$, which is close. So, $\sqrt{58.6} \doteq 7.7$
10. a) 3.8 b) 1.4 c) 0.3 d) $0.811 . a) 17 \mathrm{~cm}$ b) 7.1 m 12 . a) 22 faces or unit ${ }^{2}$ b) 18 faces or unit ${ }^{2}$ c) 36 faces or unit ${ }^{2}$ d) 30 faces or unit $\left.{ }^{2} 13.11900 \mathrm{~cm}^{2} 14 . a\right) 6345 \mathrm{~m}^{2}$ b) $3410 \mathrm{~m}^{2}$ c) 12 cans that cost $\$ 540$ 15. a) $996 \mathrm{~cm}^{2}$ b) $4200.4 \mathrm{~cm}^{2} 16$. $162.2 \mathrm{~m}^{2}$

Math 9A - Midterm 2 Review - Ch 7 (Scale Factor, Similar Shapes) Name: \qquad
Scale Factor $=\frac{\text { Scale }}{\text { Original }} \quad$ AKA \quad Scale Factor $=\frac{\text { Enlargement }}{\text { Original }} \quad$ OR \quad Scale Factor $=\frac{\text { Reduction }}{\text { Original }}$

1. A photo has dimensions 17.5 cm by 14.3 cm . The photo is to be enlarged by a scale factor of 3.5 .

Calculate the dimensions of the enlargement.
2. Determine the scale factor of this reduction

3. A circle has a diameter of 48 cm . The diameter of the reduction (scale diagram) is 42 cm .

Determine the scale factor.
4. A luxury cruise ship is 38 m long. A model of this ship is 15.2 cm long
a) Determine the scale factor of the model,

> *(The 2 lengths must be in the same units).
b) A Boeing 787 plane is 57 m long. Determine the length of a model of the plane using the same scale factor 4 a.
5. Which of the trapezoids, A, B, C, D are scale diagrams of Trapezoid O? Show your scale factor work to confirm.

Determine the value of y in this proportion. $\frac{y}{2.7}=\frac{2.8}{16.8}$
7. Calculate the values of x and y in this proportion.

$$
\frac{x}{13.2}=\frac{8.5}{13.6}=\frac{6.9}{y}
$$

8. Determine the length of $E F$ in these similar triangles.

9. Determine the length of $B D$ in these similar triangles.

10. When the shadow of an electrical tower is 10.8 m long, a 4 m lamp post casts a shadow 6 m long. How tall is the electrical tower?

Answers: $1=61.25 \mathrm{~cm}$ by $50.05 \mathrm{~cm} 2=3 / 8=0.375 \quad 3=42 / 48=0.875$
$4 A=15.2 / 3800=0.0044 b=0.228 \mathrm{~m}=22.8 \mathrm{~cm}$
$5=C$ (SF of 1.5) and $D(S F$ of 2$) 6=0.45 \quad 7=x=8.25 y=11.048=32.4$
$9=8 \quad 10=7.2 \mathrm{~m}$

