Square Roots of Perfect Squares: Guided Notes

If there is no index, the index is \qquad _.

A \qquad
\qquad is a number whose square root is a rational number.
$36 \longrightarrow \sqrt{36}$
$0.36 \longrightarrow \sqrt{0.36}$
$\frac{36}{4} \longrightarrow \sqrt{\frac{36}{4}}$

Square roots are based on squares!

Finding the square root of a number is the
\qquad operation of \qquad a number.

$\sqrt{4}=\square$	$\square^{2}=4$
$\sqrt{25}=\square$	$\square^{2}=25$
$\sqrt{49}=\square$	$\square^{2}=49$
Common Eror: $\square^{2} \neq \sqrt{36}$	

Ex 1: Evaluate RULE: You can't take the square root of a negative number!	Ex 2: Squaring (Find a number whose square root is x) Calculate a number whose square root is 5 . Calculate a number whose square root is 7
Ex 3: Fractions as radicands $\begin{aligned} & \sqrt{\frac{4}{25}}=\frac{\sqrt{4}}{\sqrt{25}}= \\ & \sqrt{\frac{25}{49}}=\frac{\sqrt{25}}{\sqrt{49}}= \end{aligned}$	Ex 4: Decimals as radicands $\begin{aligned} & \sqrt{ } 64 \\ & \sqrt{ } 6.4 \\ & \sqrt{ } 0.64 \\ & \sqrt{ } 0.064 \\ & \sqrt{ } 0.0064 \\ & \sqrt{ } 0.00064 \end{aligned} \quad \sqrt{0.64}=\sqrt{\frac{64}{100}}=$ RULE: A decimal number is a perfect square if it has an even number of decimal places and the number, if the decimal were to be removed, would be a perfect square.
Ex 5: Pythagorean's Theorem (Find Hypotenuse) $a^{2}+b^{2}=c^{2} 7 \underset{6}{a}$	Ex 6: Pythagorean's Theorem (Have Hypotenuse) $c^{2}-b^{2}=a^{2}$

