N: #4(a-c), #5(a-c), #6, #8, #14 (a-d), #5(a,b) [A]: #6,8,12,14,15,16 (a,b,e)

Practice

[E] :# 12,14,15,16,19(a,e,f), 20(a)

complete any Six questions from the lists above

- **4.** Write each expression as a product of powers.
 - a) $(6 \times 4)^3$ b) $(2 \times 5)^4$ c) $[(-2) \times 3]^5$
 - d) $(25 \times 4)^2$ e) $(11 \times 3)^1$ f) $[(-3) \times (-2)]^3$
- **5.** Write each expression as a quotient of powers.
 - a) $(8 \div 5)^3$ b) $(21 \div 5)^4$ c) $[(-12) \div (-7)]^5$
- d) $\left(\frac{10}{3}\right)^3$ e) $\left(\frac{1}{3}\right)^2$ f) $\left(\frac{27}{100}\right)^4$
- **6.** Write as a power.
 - a) $(3^2)^4$
- b) $(6^3)^3$
- c) $(5^3)^1$
- d) $(7^0)^6$
- e) $-(8^2)^2$ f) $[(-3)^4]^2$
- 7. Simplify $(2^4)^2$ and $(2^2)^4$. What do you notice? Explain the results.
- **8.** Write each expression as a product or quotient of powers.
 - a) $[3 \times (-5)]^3$
- b) $-(2 \times 4)^5$
- c) $\left(\frac{2}{3}\right)^4$
- d) $\left(\frac{-7}{-2}\right)^2$
- e) $-[(-10) \times 3]^3$

Apply

- **9.** Why is the value of $(-5^2)^3$ negative?
- **10.** Simplify each expression, then evaluate it. For each expression, state the strategy you used and why.
 - a) $(3 \times 2)^3$ b) $[(-2) \times 4]^2$ c) $(\frac{9}{-3})^3$
- d) $\left(\frac{8}{2}\right)^2$ e) $(12^8)^0$ f) $[(-4)^2]^2$
- **11.** Why is the value of $[(-2)^3]^4$ positive but the value of $[(-2)^3]^5$ is negative?

and $[(-4)^2]^3$.

What do you notice? Explain the results.

- 13. Assessment Focus For each expression below:
 - i) Evaluate it in two different ways:
 - · do the operation in brackets first
 - · use the exponent laws
 - ii) Compare the results. Which method do you prefer? Was it always the same method each time? Explain.
 - a) $(4 \times 3)^3$ b) $[(-2) \times (-5)]^2$ c) $(\frac{6}{2})^4$

 - d) $\left(\frac{14}{2}\right)^0$ e) $[(-5)^2]^2$
- f) $(2^5)^3$
- 14. Simplify, then evaluate. Show your work.
 - a) $(3^2 \times 3^1)^2$
- b) $(4^6 \div 4^4)^2$
- c) $[(-2)^0 \times (-2)^3]^2$ d) $(10^6 \div 10^4)^3$
- e) $(10^3)^2 \times (10^2)^3$ f) $(12^2)^4 \div (12^3)^2$
- q) $(5^2)^6 \div (5^3)^4$ h) $[(-2)^2]^3 \times (-2)^3$
- **15.** Find any errors in this student's work. Copy the solution and correct the errors.

a) $(3^2 \times 2^2)^3 = (6^4)^3$	b) $[(-3)^2]^3 = (-3)^5$
= 6 ¹²	= - 243
= 2 176 782 336	
$c) \left(\frac{G^2}{G^1}\right)^2 = G^4$	a) $(2^6 \times 2^2 \div 2^4)^3 = (2^3)^3$
= 1296	= 29
7 1210	= 512
e) $(10^2 + 10^3)^2 = (10^5)^2$	
= 1010	
= 10 000 00	00 000

16. Simplify, then evaluate each expression.

a)
$$(4^2 \times 4^3)^2 - (5^4 \div 5^2)^2$$

b)
$$(3^3 \div 3^2)^3 + (8^4 \times 8^3)^0$$

c)
$$(2^3)^4 + (2^4 \div 2^3)^2$$

d)
$$(6^2 \times 6^0)^3 + (2^6 \div 2^4)^3$$

e)
$$(5^3 \times 5^3)^0 - (4^2)^2$$

f)
$$(10^5 \div 10^2)^2 + (3^3 \div 3^1)^4$$

17. Simplify, then evaluate each expression.

a)
$$[(-2)^3 \times (-2)^2]^2 - [(-3)^3 \div (-3)^2]^2$$

b)
$$[(-2)^3 \div (-2)^2]^2 - [(-3)^3 \times (-3)^2]^2$$

c)
$$[(-2)^3 \times (-2)^2]^2 + [(-3)^3 \div (-3)^2]^2$$

d)
$$[(-2)^3 \div (-2)^2]^2 + [(-3)^3 \times (-3)^2]^2$$

e)
$$[(-2)^3 \div (-2)^2]^2 - [(-3)^3 \div (-3)^2]^2$$

f)
$$[(-2)^3 \times (-2)^2]^2 + [(-3)^3 \times (-3)^2]^2$$

- **18.** Use grid paper. For each expression below:
 - i) Draw a rectangle to represent the expression.
 - ii) Use the exponent laws to write the expression as a product of squares.
 - iii) Draw a rectangle to represent the new form of the expression.
 - iv) Compare the two rectangles for each expression. How are the rectangles the same?

How are they different? Use these rectangles to explain how the square of a product and the product of squares are related.

a)
$$(2 \times 3)^2$$

b)
$$(2 \times 4)^2$$

c)
$$(3 \times 4)^2$$

d)
$$(1 \times 4)^2$$

a)
$$(2^3 \times 2^6)^2 - (3^7 \div 3^5)^4$$

b)
$$(6 \times 8)^5 + (5^3)^2$$

c)
$$[(-4)^3 \times (-4)^2]^2 + (4^3 \times 4^2)^2$$

d)
$$[(-2)^4]^3 + [(-4)^3]^2 - [(-3)^2]^4$$

e)
$$[(-3)^4]^2 \times [(-4)^0]^2 - [(-3)^3]^0$$

f)
$$[(-5) \times (-4)]^3 + [(-6)^3]^2 - [(-3)^9 \div (-3)^8]^5$$

Take It Further

- 20. a) Write 81:
 - i) as a power of 9
 - ii) as a power of a product
 - iii) as a power of 3
 - b) Write 64:
 - i) as a power of 8
 - ii) as a power of a product
 - iii) as a power of 2
 - c) Find other numbers for which you can follow steps similar to those in parts a and b.
- **21.** a) List the powers of 2 from 2^0 to 2^{12} in standard form.
 - b) Use your list from part a to write each number in the expressions below as a power of 2. Evaluate each expression using the exponent laws and the list in part a.

i)
$$32 \times 64$$

ii)
$$16 \times 8 \times 32$$

iii)
$$1024 \div 128$$
 iv) $\frac{16 \times 256}{1024}$

iv)
$$\frac{16 \times 256}{1024}$$

v)
$$(8 \times 4)^3$$

v)
$$(8 \times 4)^3$$
 vi) $\left(\frac{256}{64}\right)^4$

Reflect

Design and create a poster that summarizes all the exponent laws you have learned. Provide an example of each law.

2.5 Exponent Laws II, page 84

4. a)
$$6^3 \times 4^3$$

b) $2^4 \times 5^4$

c)
$$(-2)^5 \times 3^5$$

d) $25^2 \times 4^2$

 $(-3)^3 \times (-2)^3$

$$(5.)$$
 a) $8^3 \div 5^3$

b) $21^4 \div 5^4$

c)
$$(-12)^5 \div (-7)^5$$

b) 69

e)
$$\frac{1^2}{3^2}$$

f) $(-3)^8$

d)
$$7^0$$
 e) -8^4
7. $(2^4)^2 = 2^8$; $(2^2)^4 = 2^8$;

 $(2^4)^2 = 2^8$; $(2^2)^4 = 2^8$; The results are the same because

each expression is the product of 8 factors of 2. a) $3^3 \times (-5)^3$

c)
$$\frac{2^4}{3^4}$$

e)
$$-(-10)^3 \times 3^3$$

f) $16^2 \div 9^2$

(12)
$$-(4^2)^3 = -4096$$
; $(-4^2)^3 = -4096$; $[(-4)^2]^3 = 4096$

14.

729

256

64 c)

1 000 000 d)

1 000 000 000 000 f) e)

144 -512

g)

h) The student multiplied the bases and multiplied

the powers.

(15.)

 $(3^2 \times 2^2)^3 = 3^6 \times 2^6 = 729 \times 64 = 46656$ b) The student added the exponents instead of

multiplying them. $[(-3)^2]^3 = (-3)^6 = 729$ The student might have thought that 61 is 1.

$$\left(\frac{6^2}{6^1}\right)^2 = (6^1)^2 = 6^2 = 36$$

d) The student did not simplify the powers in the brackets correctly.

 $(2^6 \times 2^2 \div 2^4)^3 = (2^{6+2-4})^3 = (2^4)^3 = 2^{12} = 4096$

e) The student multiplied the powers in the brackets instead of adding them.

 $(10^2 + 10^3)^2 = (100 + 1000)^2 = 1100^2 = 1210000$

(16.) a)

1 047 951

28 b)

4100

46 720 d)

-255

1 006 561

19.

a) 255 583

254 819 593

c) 2 097 152

1631 d)

e) 6560

54 899

20.

a) i) 9^2 ii) $(3 \times 3)^2$ iii) 3⁴

i) 8^2 ii) $(2 \times 4)^2$

iii) 2^6

swer se check progress