Extra Practice 4

Lesson 2.4: Exponent Laws 1

1. Write each product as a single power.

a)
$$4^3 \times 4^2$$

b)
$$5^{0} \times 5^{0}$$
 c) $(-2)^{2} \times (-2)^{4}$
e) $(-7)^{0} \times (-7)^{2}$ f) $(-9)^{6} \times (-9)^{3}$

d)
$$-6^3 \times 6^1$$

e)
$$(-7)^0 \times (-7)^2$$

f)
$$(-9)^6 \times (-9)^3$$

2. Write each quotient as a single power.

a)
$$8^7 \div 8^5$$

b)
$$10^4 \div 10^0$$

c)
$$(-1)^6 \div (-1)^3$$

d)
$$\frac{-3^4}{3^4}$$

e)
$$\frac{(-9)^{10}}{(-9)^5}$$

f)
$$\frac{11^9}{11^6}$$

3. Express as a single power.

a)
$$2^3 \times 2^6 \div 2^9$$

a)
$$2^3 \times 2^6 \div 2^9$$
 b) $(-5)^8 \div (-5)^4 \times (-5)^3$ c) $\frac{6^3 \times 6^5}{6^2 \times 6^4}$

c)
$$\frac{6^3 \times 6^5}{6^2 \times 6^4}$$

4. Simplify, then evaluate. a) $2^2-2^0\times 2+2^3$

a)
$$2^2 - 2^0 \times 2 + 2^3$$

b)
$$(-2)^6 \div (-2)^5 - (-2)^5 \div (-2)^3$$
 c) $-2^2(2^3 \div 2^1) - 2^3$

c)
$$-2^2(2^3 \div 2^1) - 2^3$$

5. Simplify, then evaluate.

a)
$$4^3 \div 4^2 + 2^4 \times 3^2$$

b)
$$3^2 + 4^2 \times 4^1 \div 2^3$$

a)
$$4^3 \div 4^2 + 2^4 \times 3^2$$
 b) $3^2 + 4^2 \times 4^1 \div 2^3$ c) $\frac{3^4}{3^3} + \frac{4^2 \times 4^0}{2^4}$

6. Write each relationship as a product of powers or a quotient of powers.

- a) One million is 1000 times as great as one thousand.
- b) One billion is 1000 times as great as one million.
- c) One hundred is one-tenth of one thousand.
- d) One is one-millionth of one million.
- e) One trillion is 1000 times as great as one thousand million.

7. Identify, then correct any errors in these answers.

Explain how you think the errors occurred.

a)
$$5^3 \times 5^2 = 5^6$$

b)
$$2^3 \times 4^2 = 8^5$$

c)
$$(-3)^8 \div (-3)^4 = (-3)^4$$

d)
$$1^2 \times 1^4 - 1^3 = 1^3$$
 e) $\frac{4^2 \times 4^4}{4^2 \times 4^1} = 4^2$

$$e) \quad \frac{4^2 \times 4^4}{4^2 \times 4^1} = 4^2$$

Master 2.23

Extra Practice Sample Answers

6. a)

Exponent	Power	Standard Form
6	10 ⁶	1 000 000
5	105	100 000
4	104	10 000
3	10 ³	1000
2	10²	100
1	10¹	10
0	10º	1

b) In the 2nd column, the exponents are decreasing by 1 each time. In the 3rd column, the number of zeros after the 1 decreases by 1; each time we divide by 10 to get the number below, and in the last row: $10 \div 10 = 10^{\circ} = 1$

Extra Practice 3 – Master 2.19

Lesson 2.3

- 1. a) 28
- b) 22 e) 64

- d) -4 q) 34
- h) 16
- 2. a) 128
- b) 32

- e) 512
- g) 512
- 3. a) 65
- b) -9 e) 256
- c) 55

- d) 80 000
- f)
- 4. a) $15 \div (3 + 2) \times 4^2 5 = 43$
 - **b)** $15 \div 3 + 2 \times (4^2 5) = 27$
 - c) $(15 \div 3 + 2) \times 4^2 5 = 107$
 - d) $15 \div 3 + (2 \times 4)^2 5 = 64$
- 5. About 6 jars
- 6. a) The correct solution: $(-4)^2 - 3[(-9) \div 3]^2 = (-4)^2 - 3(-3)^2 = 16$ -3(9) = 16 - 27 = -11
 - **b)** Shane probably thought that $(-3)^2 = -9$; here is a possible incorrect solution:

$(-4)^2 - 3[(-9) \div 3]^2 = (-4)^2 - 3(-3)^2 = 16$ -3(-9) = 16 + 27 = 43

Aftab probably multiplied -3 and -9 before evaluating in the brackets and applying the exponent. Here is a possible incorrect solution:

$$(-4)^2 - 3[(-9) \div 3]^2 = 16 + (27 \div 3)^2 = 16 + 9^2 = 16 + 81 = 97$$

Kyra probably squared the 3 before doing any other operation. Here is a possible incorrect solution:

$$(-4)^2 - 3[(-9) \div 3]^2 = 16 - 3[(-9) \div 9]$$

= 16 - 3(-1) = 16 + 3 = 19

Extra Practice 4 – Master 2.20

Lesson 2.4

- 1. a) 4⁵
- **b)** 50
- c) $(-2)^6$

- d) -64
- f) $(-9)^9$

- 2. a) 8² d) -3°

- 3. a) 2º
- **b)** $(-5)^7$

- 4. a) 10
- **b**) -6

5. a)
$$4^3 \div 4^2 + 2^4 \times 3^2 = 4 + 16 \times 9 = 148$$

b)
$$3^2 + 4^2 \times 4^1 + 2^3 = 9 + 64 + 8 = 17$$

c)
$$\frac{3^4}{3^3} + \frac{4^2 \times 4^0}{2^4} = 3 + \frac{16}{16} = 3 + 1 = 4$$

- 6. a) $1000000 = 10^3 \times 10^3$
 - **b)** $1\ 000\ 000\ 000\ = 10^3 \times 10^6$
 - **c)** $100 = \frac{10^3}{10^1}$
- **d)** $1 = \frac{10^6}{10^6}$
- e) $1\ 000\ 000\ 000\ 000 = 10^3 \times 10^3 \times 10^6$
- 7. a) The exponents were multiplied instead of added. $5^3 \times 5^2 = 5^5$
 - b) The bases were multiplied. $2^3 \times 4^2 = 8 \times 10^{-3}$ 16 = 128
 - c) This solution is correct.
 - d) The exponent 3 was subtracted from the sum of exponents 2 and 4. $1^2 \times 1^4 - 1^3 = 1^6 - 1^3 = 1 - 1 = 0$
 - e) The exponents were multiplied then divided instead of added and subtracted.

$$\frac{4^2 \times 4^4}{4^2 \times 4^1} = \frac{4^6}{4^3} = 4^3$$